Comparison of rainfall generators with regionalisation for the estimation of rainfall erosivity at ungauged sites

نویسندگان

چکیده

Abstract. Rainfall erosivity values are required for soil erosion prediction. To calculate the mean annual rainfall (R), long-term high-resolution observed data required, which often not available. overcome issue of limited availability in space and time, four methods were employed evaluated: direct regionalisation R, 5 min rainfall, disaggregation daily into time steps, a regionalised stochastic model. The impact station density is considered each methods. study carried out using 159 recording 150 non-recording (daily) stations around federal state Lower Saxony, Germany. In addition, minimum record length necessary to adequately estimate R was investigated. Results show that best terms both relative bias root square error (RMSE), followed by data, yields better results than generation models, namely an alternating renewal model (ARM) multiplicative cascade However, key advantage models ability generate series can be used estimation erosive event characteristics. This possible if regionalising only R. Using ARM, it assessed more 60 years needed most cases reach stable erosivity. Moreover, temporal resolution measuring devices found have significant effect on with coarser leading higher bias.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rainfall erosivity in Europe.

Rainfall is one the main drivers of soil erosion. The erosive force of rainfall is expressed as rainfall erosivity. Rainfall erosivity considers the rainfall amount and intensity, and is most commonly expressed as the R-factor in the USLE model and its revised version, RUSLE. At national and continental levels, the scarce availability of data obliges soil erosion modellers to estimate this fact...

متن کامل

Regionalisation of Rainfall-Runoff Models

A new approach to regionalisation for prediction of flow characteristics in ungauged catchments is presented. If flows in ungauged catchments are to be predicted using calibrated rainfall-runoff models, regional relationships between the parameters of such models and catchment attributes must be determined. This is only possible with parsimonious models (fewer than about 7 parameters), and even...

متن کامل

Estimation of rainfall erosivity using 5- to 60-minute fixed-interval rainfall data from China

The 30-min rainfall erosivity index (EI30) is commonly used in the Universal Soil Loss Equation for predicting soil loss from agricultural hillslopes. EI30 is calculated from the total kinetic energy and the maximum 30-min rainfall intensity of a storm. Normally, EI30 values are calculated from breakpoint rainfall information taken from continuous recording rain gauge charts, however, in many p...

متن کامل

Rainfall erosivity over the Calabrian region

Abstract Following the results of a study carried out for the neighbouring Sicilian region, this paper reports a study of the applicability of the annual value, F , of the Arnouldus index to represent the erosion risk in Calabrian region. Firstly, By using 214 values of the mean annual value of the erosivity index, FF, and a Kriging interpolation method, an isoerosivity map is plotted. Then, in...

متن کامل

the innovation of a statistical model to estimate dependable rainfall (dr) and develop it for determination and classification of drought and wet years of iran

آب حاصل از بارش منبع تأمین نیازهای بی شمار جانداران به ویژه انسان است و هرگونه کاهش در کم و کیف آن مستقیماً حیات موجودات زنده را تحت تأثیر منفی قرار می دهد. نوسان سال به سال بارش از ویژگی های اساسی و بسیار مهم بارش های سالانه ایران محسوب می شود که آثار زیان بار آن در تمام عرصه های اقتصادی، اجتماعی و حتی سیاسی- امنیتی به نحوی منعکس می شود. چون میزان آب ناشی از بارش یکی از مولفه های اصلی برنامه ...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Earth surface dynamics

سال: 2022

ISSN: ['2196-6311', '2196-632X']

DOI: https://doi.org/10.5194/esurf-10-851-2022